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Abstract

Large-scale pre-training has recently emerged as a technique for creating capable, general-
purpose, generative models such as GPT-3, Megatron-Turing NLG, Gopher, and many oth-
ers. In this paper, we highlight a counterintuitive property of such models and discuss
the policy implications of this property. Namely, these generative models have an unusual
combination of predictable loss on a broad training distribution (as embodied in their "scal-
ing laws"), and unpredictable specific capabilities, inputs, and outputs. We believe that
the high-level predictability and appearance of useful capabilities drives rapid development
of such models, while the unpredictable qualities make it difficult to anticipate the conse-
quences of model deployment. We go through examples of how this combination can lead
to socially harmful behavior with examples from the literature and real world observations,
and we also perform two novel experiments to illustrate our point about harms from un-
predictability. Furthermore, we analyze how these conflicting properties combine to give
model developers various motivations for deploying these models, and challenges that can
hinder deployment. We conclude with a list of possible interventions the AI community
may take to increase the chance of these models having a beneficial impact. We intend
this paper to be useful to policymakers who want to understand and regulate AI systems,
technologists who care about the potential policy impact of their work, and academics who
want to analyze, critique, and potentially develop large generative models.
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1 Introduction

Scaling up the amount of data, compute power, and model parameters of neural networks has recently led
to the arrival (and real world deployment) of capable generative models such as CLIP [55], Ernie 3.0 Titan
[70], FLAN [71], Gopher [56], GPT-3 [11], HyperClova [43], Jurassic-1-Jumbo [46], Megatron Turing NLG
[64], LaMDA [68], Pan Gu [78], Yuan 1.0 [76], and more. For this class of models4 the relationship between
scale and model performance is often so predictable that it can be described in a lawful relationship — a
scaling law. In most cases, these scaling laws predict a continued increase in certain capabilities as models
get larger. At the same time, larger generative models represent an increasing proportion of the eye-catching
results in machine learning. As a result, many institutions have started producing large models over the past
few years, in response to the predictability afforded by scaling laws, and the fact these models can be plugged
into systems that generate economic value, like search engines.5 It has also become clear that these models
present novel risks of harmful behavior, which are difficult to predict and may become more severe as the
models increase in capability. Attempts to study these harms with smaller models may not accurately reflect
what occurs in larger ones.

In this paper, we attempt to better understand the influence of scaling laws on the dynamics of large-scale
model development and deployment, with a focus on large language models. Our basic thesis is that large
generative models have an unusual combination of high predictability — model loss improves in rela-
tion to resources expended on training, and tends to correlate loosely with improved performance on
many tasks — and high unpredictability — specific model capabilities, inputs, and outputs can’t be
predicted ahead of time. The former drives rapid development of such models while the latter makes
it difficult to anticipate the consequences of their development and deployment. We go through exam-
ples of how this combination can lead to socially harmful behavior, while also analyzing the motivations and
challenges that developers of such models will face. Our goal in this paper is to outline how and why we
expect these models to be developed, so we can identify interventions to guide model development. We con-
clude with some policy recommendations that could increase the safety of large-scale model deployments,
and improve the incentive structure for developers building these models. Though all of the individual points
about scaling laws, open-endedness, or the proliferation of large models are explicitly or implicitly presented
in other research, our contribution here is to highlight the complete picture together with its implications.

Although we focus on scaling laws, many of our points complement existing views on the societal risks of
deploying large models [7, 67, 9, 19, 72, 41]. However, similarly to [72], we do not consider here the costs
of human labor involved in creating and annotating training data [28], the ethics of supply chains involved in
creating the requisite hardware on which to train models [18], or the environmental costs of training models
[7, 50, 62, 66]. Scaling laws are likely to significantly impact these issues.

The remainder of the paper is organized as follows. In Section 2, we articulate and support our central thesis
about large generative models by decomposing it into four claims, each of which we support with evidence
from previously published data, and in some cases, with novel experiments on large language models [3].
In Section 2.1 we discuss smooth general capability scaling. More precisely, by general capability scaling
we mean two things. First, the training (and test) loss improves predictably with scale on a broad data
distribution. Second, this improvement in loss tends to correlate on average with increased performance on
a number of downstream tasks [11, 56]. We refer to the combination of these two properties throughout
the paper as smooth general capability (or performance) scaling.6 In Section 2.2, we discuss abrupt specific
capability scaling, in which models can also suddenly gain specific capabilities at scale. We illustrate this
phenomenon with three examples from the literature [11, 56, 4]. In Section 2.3, we argue that entire areas
of model competency may be unknown until they are solicited from specific inputs, problem domains, or
applications. In Section 2.4, we discuss challenges that arise from the open-endedness of model outputs and
show both qualitative and quantitative examples of harmful and toxic outputs emerging with scale.

In Section 3, we outline why, despite these conflicting properties of predictability and unpredictability, we
expect increasing development and deployment of large generative models despite the challenges we outline
in Section 2. We posit that this is due to a confluence of economic, scientific, and prestige motivations,
each of which we summarize. We also consider a few possible barriers to entry that model developers

4Some refer to this class of models as ‘foundation models’[9].
5We do not discuss to whom this economic value accrues, and we do not intend to imply that by default it will accrue

broadly or that no one will be harmed.
6Note that, as will be discussed later as the central thesis of the paper, smooth general capability scaling does not

imply smooth scaling on any particular task. It also does not imply that the tasks typically measured are the only tasks
that are important; indeed the presence of unmeasured tasks is part of our thesis.
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Figure 1 Scaling laws reliably predict that model performance (y-axes) improves with increasing compute (Left),
training data (Middle), and model size (Right). In all cases a power-law (straight line, black) fits the empirically observed
data (blue) exceptionally well. Figure adapted from [40].

may face during development and deployment, including high financial costs, access to engineering talent,
safety concerns, and a lack of standards on how to responsibly deploy capable generative models. We also
provide some empirical observations (grounded in the motivations and challenges described above) about
how the development of large language models has unfolded thus far, including a quantitative analysis of the
increasing gap between academia and industry for large model development.

Finally, in Section 4 we outline policy interventions that may help concretely address the challenges we
outline in Sections 2 and 3 in order to help guide the development and deployment of larger models for the
broader social good. We leave some illustrative experiments, technical details, and caveats about our claims
in Appendix A.

2 Distinguishing Features of Large Generative Models

We claim that large generative models (e.g., GPT-3 [11], LaMDA [68], Gopher [56], etc.) are distinguished
by four features:

• Smooth, general capability scaling: It is possible to predictably improve the general performance
of generative models — their loss on capturing a specific, though very broad, data distribution —
by scaling up the size of the models, the compute used to train them, and the amount of data they’re
trained on in the correct proportions. These proportions can be accurately predicted by scaling laws
(Figure 1). We believe that these scaling laws de-risk investments in building larger and generally
more capable models despite the high resource costs and the difficulty of predicting precisely how
well a model will perform on a specific task. Note, the harmful properties of models, such as toxicity,
can scale alongside directly helpful capabilities.

• Abrupt, specific capability scaling: Though performance is predictable at a general level, perfor-
mance on a specific task can sometimes emerge quite unpredictably and abruptly at scale.7 While
counter-intuitive, this is possible because any specific task is a tiny slice of a model’s output proba-
bility distribution, and so can change rapidly even as the full distribution remains smooth.

• Open-ended inputs and domains: Large generative models are open-ended and can take in a vary-
ing range of inputs concerning arbitrary domains. As a result, certain capabilities (or even entire
areas of competency) may be unknown until an input happens to be provided that solicits such
knowledge. Even after a model is trained, creators and users may not be aware of most of its (possi-
bly harmful) capabilities. These properties become more pronounced as the models scale — larger
models tend to be harder to characterize than smaller ones.

• Open-ended outputs: Finally, model outputs are also open-ended in the sense that they are difficult
to predict or control, even given a fixed scale, input, topic, or task. These outputs may be helpful
or harmful, but it’s difficult to know in advance. Of course, models with both open-ended inputs
and outputs have existed for decades, but what is new is the level of capability and breadth of open-
endedness.

In the following sections, we further describe each of these distinguishing features, and discuss how combi-
nations of them may lead to disruptive societal impacts. We support our claims with data and experiments.

7Similar behavior has also been observed during the training process of an individual model (rather than as a function
of model size) for algorithmic tasks, and has been termed “grokking” [52].
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Figure 2 Three examples of abrupt specific capability scaling described in Section 2.2, based on three different models:
GPT-3 (blue), Gopher (orange), and a Google language model (green). (Left) 3-Digit addition with GPT-3 [11]. (Middle)
Language understanding with GPT-3 and Gopher [56]. (Right) Program synthesis with Google language models [4].

2.1 Smooth General Capability Scaling

Generally, machine learning experiments are not precisely predictable — complex models trained on complex
data typically yield noisy or variable results [79, 17].8 Though individual experiments may be unpredictable,
the general performance of large generative models tends to exhibit smooth and predictable growth as a func-
tion of scale — larger systems tend to do increasingly better on a broad range of tasks. This was first noticed
by [37] who observed that capabilities such as machine translation and speech recognition increased in a
smooth, predictable manner as the size of the model increased. Subsequent work formalized and experimen-
tally validated a quantitative relationship between scale (in terms of both model size and training data size)
and model generalization error [59]. Furthermore, [40] demonstrated that test loss performance on language
modeling tasks scales as a predictable function of model size, dataset size, and duration of training. These
three factors are like ingredients in a chemical reaction, such that if all are scaled up in tandem, the test loss
improves proportionally. However, if there is too little of one ingredient, gains are limited by this ingredient.
The trends are remarkably consistent, with only tiny deviations from a simple fit to the data9, covering dozens
of data points and several orders of magnitude (Figure 1). Subsequent work has shown that similar scaling
laws exist in generative models for other modalities (e.g., images, video, math, etc.) [35], audition [21],
transfer from text to programming [36], few-shot adaptation of vision models [54], and more.

Predictable scaling, and especially the underlying dependency on precise mixtures of data, model size, and
training, has implications for the process of model development. It shifts development of this type of model
from a process of artisanal trial-and-error to more of a predictable engineering process, where the resources
needed to achieve a particular result can be precisely calculated, and the cost of those resources can be
compared to the utility of the result. Although very specific behaviors may not be predictable (more on this
in Section 2.2), the general test loss tends to correlate well on average with many tasks, meaning that larger
models typically make significant gains across the board. In this sense, scaling laws de-risk investments
in large models. We say more on this in Section 3.1 and provide more technical details on how developers
may use scaling laws in Appendix A.2. To further illustrate how smooth general scaling correlates with task
performance, and how a scale-based analysis can be used to forecast the potential economic value of a given
model, we outline a small original experiment in Appendix A.3 that analyzes the relationship between scale
and GPT-3 like language models [3] to be used as recommendation systems with zero-shot learning. We chose
this example because recommendation systems have tangible economic relevance, known societal impact, are
well studied in machine learning with domain specific algorithms [31], but are not typically studied with large
scale generative models (yet). Surprisingly, we find that that generative models can increasingly operate as
simple recommendation systems as they scale with minimal effort and extremely limited access to explicit
training data. We leave a detailed analysis and discussion in Appendix A.3.

2.2 Abrupt Specific Capability Scaling

Though performance on a wide distribution of tasks may scale smoothly with model size, qualitatively differ-
ent, specific capabilities can appear abruptly and discontinuously. It is not clear when or why this happens.
But intuitively, abrupt scaling of a specific capability can co-exist with smooth general scaling for the same

8For example, [17] documents strong run-to-run irreproducibility in reinforcement learning on Atari games when
only changing the initial random seed. This suggests that differences between algorithms may be difficult to measure
rigorously due to such intrinsic noise.

9More precisely, the relationship is a straight line on a log-log plot, equivalent to a power law.
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reason that daily weather is less predictable than seasonal averages: individual data points can vary much
more than broad averages.

Here, we illustrate three examples of abrupt capability scaling for arithmetic [11], language understanding,
[32, 56], and programming [4] (Figure 2). For arithmetic, GPT-3 displays a sharp capability transition some-
where between 6B parameters and 175B parameters, depending on the operation and the number of digits
[11]. For example, three digit addition is performed accurately less than 1% of the time on any model with
less than 6B parameters, but this jumps to 8% accuracy on a 13B parameter model and 80% accuracy on a
175B parameter model – producing a “hockey stick”-style graph (Figure 2, Left) in which arithmetic ability
appears suddenly after several orders of magnitude of nothing.

A different language model, DeepMind’s Gopher [56], also displays an abrupt jump in performance on a
different dataset, the MMLU language understanding benchmark [32] (Figure 2, Middle, orange). For all
models under 6B parameters, Gopher performs under 30% accuracy, which is a little better than chance (25%
accuracy). However, the full 280B parameter Gopher model achieves 60% accuracy, a significant jump.
GPT-3 displays a similar phenomenon though of smaller magnitude (Figure 2, Middle, blue).

As a third example, a recently developed class of program synthesis models from Google display dramatic
improvements in their ability to create computer programs as they increase in size from 10B to 100B param-
eters [4] (Figure 2, Right). For example, the percentage of generated synthetic programs that solve a given
programming problem jumps substantially from 6% to 13% when the model size increases by ∼ 2x from
68B to 138B parameters, despite very small increases over the previous two orders of magnitude.

Abrupt specific capability scaling presents significant challenges for safety assurance and deployment of
large models. Although we’ve demonstrated this phenomenon for relatively anodyne capabilities, potentially
harmful ones may emerge at scale (that will not exist in smaller models) and may be difficult to anticipate.

2.3 Open-Ended Inputs and Domains

Large generative models are open-ended — they take in arbitrary inputs from a variety of domains and
generate (often relevant and creative) outputs. As a result, some model behaviors may be unknown until
they are solicited from specific inputs. Pre-trained generative models can also be fine-tuned on new data in
order to solve new problems. Broadly enabling such fine-tuning substantially increases the breadth of model
capabilities and associated difficulties in predicting or constraining model behaviors. This open-endedness
is challenging because it means AI developers may deploy their systems without fully knowing potentially
unexpected (and possibly harmful) behaviors in response to un-tested inputs.

For example, the AI Dungeon video game fine-tuned GPT-3 for fantasy role-playing10, but with the right
inputs, players were able to manipulate it to discuss any topic, essentially providing general backdoor access
to GPT-3.11 Thus, a model use-case that appeared to be designed just for one purpose, actually carried the
full range of GPT-3 capabilities, accessible through skillful use of its open-ended interface.

To further illustrate our point about the inherent challenges of open-ended inputs and domains, and tie it to the
possibility of harm from language models, we consider a problem domain that language models are typically
not (or not yet) deployed on, but which is associated with societal concerns: recidivism prediction. Some
have pointed out that even beyond specific concerns about fairness, recidivism prediction simply should
not be a task for machine learning [6]. We agree and we do not believe that language models should be
used for recidivism prediction. However, because the application is so inherently questionable, it provides a
compelling example of how harmful abilities can emerge quietly in unexpected ways as generative models
scale. It is likely that such abrupt emergence also occurs in many other contexts where the harms are more
subtle. We study a case where the problems are flagrant in order to clearly demonstrate our thesis.

To do this, we leverage the ProPublica COMPAS dataset, which includes data about more than 7, 000 defen-
dants arrested in Broward County Florida [2, 6]. The dataset includes a recidivism risk score, computed by the
COMPAS algorithm (which is meant to reflect the risk of a defendant committing a misdemeanor or felony
within 2 years of assessment based on a set of features about the defendant, not including race12), along with
the actual outcome of whether each defendant re-offended. ProPublica found that these risk scores are inac-

10https://aidungeon.medium.com/ai-dungeon-dragon-model-upgrade-7e8ea579abfe
11https://twitter.com/nickwalton00/status/1289946861478936577
12More precisely, the COMPAS algorithm makes its predictions from 137 features about a defendant and the defen-

dant’s past criminal record. COMPAS does not consider the defendant’s race; however, other features it does consider
may be correlated with race and thus lead to racially disparate predictions.
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Figure 3 Large language models, with few-shot learning, exhibit similar (or worse) inaccuracies and racial biases as
COMPAS for recidivism prediction when prompted with the same prompts from a human recidivism prediction experi-
ment [20]. This illustrates our claim in Section 2.3 that it may be difficult to anticipate possible harms of large generative
models due to the open-ended nature of their inputs and domains. (Left) Accuracy increases with model size, approaching
COMPAS performance. We see no significant difference in predictive accuracy when race is excluded from the prompt
(blue) or included in the prompt (orange). (Right) Language models become increasingly biased towards predicting
Black, compared to white, people will re-offend (when in reality they do not) similarly to COMPAS. We find a higher
false positive rate ratio when race is included in the prompt (orange) versus when it is excluded (blue). See Appendix A.4
for technical details and caveats.

curate and racially biased [2]. Further research found that human subjects with limited to no criminal justice
experience exhibit similar inaccuracies and racial biases as COMPAS when predicting recidivism based on a
simple prompt describing a defendant [20]. The human subject experiment examined two conditions, one in
which a defendant’s race was excluded from the prompt, and one in which it was included.13 Here, we use
the same prompts outlined in [20] but instead ask language models [3] instead of people to predict recidivism.
We leave full technical details and (significant) caveats in Appendix A.4; however, we foreground here that
benchmark risk assessment instrument datasets like COMPAS often contain numerous measurement biases
and errors which can make them ill-suited for making claims about real-world impact without carefully con-
sidering the the complicated socio-technical systems (in this case, the US criminal justice system) in which
they are used [6].

We found that language models exhibit similar (or worse) inaccuracies and racial biases as COMPAS. Figure
3 shows language models of increasing size compared to COMPAS in terms of two metrics mentioned in
the ProPublica analysis [2] and the subsequent human subject experiment [20]: overall predictive accuracy,
and the ratio in false positive rates for Black versus white defendants. We show results for both prompts that
exclude an individual’s race (blue) and include it (orange). For overall predictive accuracy, language models
become increasingly accurate at predicting whether defendants will re-offend (Figure 3, Left) as they increase
in size, yet they are still unreliable predictors like COMPAS. We see no significant difference in predictive
accuracy when race is excluded from the prompt or included. In both conditions, the largest model, with 52B
parameters, achieves 63% accuracy compared to COMPASs 66% accuracy.

We also see higher ratios in false positive rates for Black versus white defendants (Figure 3, Right), which
partially recapitulates the racial biases of the COMPAS algorithm outlined described in [2]. For COMPAS,
this ratio is 1.92, which indicates that Black defendants are predicted to re-offend nearly twice as often as
white defendants, when in reality they did not (a fair algorithm would have a false positive rate ratio of 1). As
language models increase in size, at around 12B parameters, the false positive rate ratio increases smoothly
and reaches a value of 1.5 for the largest model when race is excluded in the prompt and a value of 2.21
when race is included in the prompt. In the latter case, the largest language model is even less equitable than
COMPAS.14 Likely, the model is picking up on a combination of the racial bias in the small fraction of the
COMPAS dataset it sees, and ambient racial bias in the pre-trained language models.

To emphasize again what was stated earlier, the point here is not only the emergence of racial biases in the
recidivism prediction task, but also the emergence of the ability to perform this task at all. As the language
model scales, it acquires both the ability to do a task that many have argued is inherently harmful [6], and

13Interestingly, the researchers found that the exclusion of race had no significant impact on human recidivism predic-
tion accuracy or fairness [20].

14Although the false positive rate ratio of the largest language model where race is included in the prompt is 2.21 vs.
1.92 for COMPAS, in absolute terms the false positive rates for the language model (30% for Black, 12.6% for white)
are lower than the false positive rates for COMPAS (45% for Black, 24% for white)

6



Figure 4 A conversation with an AI Assistant [3] powered by a 50B parameter language model that illustrates chal-
lenges with Open-endedness outlined in Section 2.4

it performs this task in a biased manner. It is likely that large language models have many other (currently
undiscovered) "skills" that pose one or both of these problems, perhaps in less obvious forms.

In summary, pre-trained language models can be adapted with minimal effort for purposes not anticipated by
their creators, whether that’s by using the inherent capabilities of the model to evade a security constraint (as
in the AI Dungeon example), or by discovering new capabilities through novel inputs (as in the discussion of
abrupt capability jumps in Section 2.2, and the recidivism experiment above). We also note that many of the
most surprising capabilities manifest at large-scale, so working with smaller models will make it harder to
explore such capabilities.

2.4 Open-Ended Outputs

In the previous section we argued that language models have open-ended inputs, which creates the opportunity
for unexpected and undetected capabilities to emerge. But even when the input or topic is fixed, the resulting
output can be varied and unpredictable. This kind of unpredictability is arguably more familiar and widely
studied than the previous kind, but is worth briefly discussing as it adds an additional layer of complexity to
large model behavior.

As an example, in Figure 4 we ask an AI assistant [3] to tell us something offensive, for the purpose of
illustrating our claim. Despite prompting the model with a relatively clear input, the model has generated an
output that is tangential to the question at hand: the response isn’t directly offensive, but is instead a list of
offenses made by other AI systems. One effect of this open-endedness is that unpredictable model responses
can be a distraction away from a person’s original query.

7
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Figure 5 The toxicity of model outputs increases smoothly with model size, which illustrates how though loss may re-
duce generally when scaling a model, other societally impactful potential harms of the model may also scale, as described
in Section 2.4.

Open-endedness also introduces a second and more harmful risk of factual inaccuracy. Taking a closer look
at the exchange in Figure 4, we can see that the model has made up these offenses - systems like IBM Watson
and Microsoft’s Tay [75] did have problems during their deployment, but the AI assistant gets the year and
error wrong in the case of Watson, and the error wrong (but year right) in the case of Tay. When we ask the
model if it is sure the examples are correct, the model gives misleading answers and questions the authority
of the human asking it questions. This illustrates how even with a specific input (e.g, requesting the model
say something offensive), AI models can give outputs that are not only distracting, but potentially misleading.

Open-ended model outputs can also introduce harmful or undesirable text. For example, Figure 5 shows that
the toxicity (defined as rude, disrespectful, or unreasonable language [27])15 of text generated from language
models [3] increases smoothly and significantly with model size. A recent study has observed a very similar
toxicity trend with model size using similar models with different analyses [56], which suggests that this may
be a general phenomenon. We leave further details and caveats in Appendix A.6.

Many applications for language models, including chat bots, search engines, text summarization systems,
question answer systems, machine translation systems, etc., rely on open-ended text generation. As such,
we argue that it is important to quantify how societally relevant aspects of open-ended text generation —
relevancy, accuracy, safety, and even creative expression (see Appendix A.5 for a discussion on AI generated
poetry) — scale with model size. It will also be important to develop techniques that can improve the factual
accuracy of the results of AI models, as described in e.g., [10], and to make the outputs of models more
appropriate and less likely to display harmful biases [65].

3 Motivations and Problems in the Development and Deployment of Large Models

In the previous section we described our basic thesis that large generative models have an unusual combina-
tion of four distinguishing features: predictable general performance, and unpredictable specific capabilities,
inputs, and outputs. Predictable general performance, combined with impressive outputs (e.g, specific ca-
pabilities) drives rapid development of such models, while the unpredictability makes it difficult for model
developers to anticipate the consequences of model deployment. There are numerous motivations (and barri-
ers) for developing and deploying large generative models due to (or in spite of) these distinguishing features.
Here, we focus on elements of this fundamental tension and ground our discussion with some empirical ob-
servations.

More specifically, in Section 3.1 we outline three salient motivations for developing and deploying large
generative models: economic, scientific, and prestige. Conversely, in Section 3.2 we outline three barriers
to entry: the financial costs and engineering talents required in order to scale models, AI safety issues, and
the lack of standards and norms in model deployment. Finally, in Section 3.3 we illustrate how combinations
of these motivations and barriers may explain some empirical observations on how the development and
deployment of language models has occurred thus far. In particular, we note that large language models are
rapidly proliferating, that there is a rising gap between industry and academia for developing such models, and
that there have been numerous documented examples of model deployments causing harm and controversy.

15https://github.com/conversationai/perspectiveapi
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3.1 Motivations for Developing and Deploying Large Models

Economic

Perhaps the simplest and most obvious motivation for model development is economic. Scaling laws mean
that the cost to develop a model can be precisely estimated, and when an economically valuable output can
be found to scale smoothly with the loss, then the returns to training a model can also be calculated. This
applies both generally and specifically — some institutions may wish to broadly improve the capabilities
of a given model and will thus have an economic incentive to build them, while others may be targeting a
specific model capability which is accompanied by a scaling law, and will therefore also have an incentive
to build them. This has the effect of de-risking the training of large models: a predictable amount can be
invested for a relatively predictable return, unlike many speculative research projects where an open-ended
amount must be invested for an uncertain return. Predictability makes the logic of research investment more
obvious and may help to justify it within large institutions (see Appendix A.2 for more examples). Thus,
economic motivations, combined with continued smooth, general capability scaling, suggest that we should
expect to see increasing model deployments. While it may not be possible to predict in advance precisely
which search queries will benefit from a particular AI model and which won’t, or which applications will
flourish and which will unpredictably fail, or which development workflows will be helped by code synthesis
models, all of these applications take advantage of broad averages to tie economic returns to the smooth
general capability scaling.

Scientific

Large generative models may be a necessary basis for broad swaths of novel interdisciplinary AI research on
topics ranging from linguistics and robotics to philosophy and the social sciences [9]. Without the develop-
ment of (or at least access to) large models, it will be challenging to research how they may advance progress
in societally impactful research domains such as healthcare, education, and law [9]. Large models are also
fertile testing grounds for developing next-generation algorithms and architectures — novel algorithms can
be rigorously evaluated according to whether they advantageously shift scaling laws to be more compute,
data, or parameter efficient.

Prestige

The fact these models are on the frontier of possibility also creates a prestige incentive for developing them.
Large models can be an advertisement for the capabilities of an institution – a way to gain a perceived
advantage in the public eye, to make it easier to recruit (coveted) skilled AI researchers, to increase sales of
services unrelated to large models, or to support national initiatives or national pride.

All of these motivations have the potential to create an unusual situation where there are strong in-
centives to develop, disclose, and even deploy large generative models despite high uncertainty about the full
extent of what these models are capable of.

3.2 Barriers to Entry in Developing and Deploying Large Models

Financial Costs and Engineering Talent

Scaling up large generative models requires a significant financial investment. For example, GPT-3 was
estimated to cost several million dollars to train.16 Scaling up large generative models also requires specific
engineering competencies, e.g., distributed systems engineering, familiarity with cluster management tools
like Kubernetes, low-level GPU programming, managing continuous integration testing, etc. The size of
these models has led to longer development timelines and more complex workflows than previous systems
over the past decade. For example, only ∼ 10 years ago, one of the larger scale AI models at the time,
AlexNet17 [44], was trained by a graduate student for a few thousand of dollars on a single desktop machine
with 2 GPUs.

16https://lambdalabs.com/blog/demystifying-gpt-3/
17Though not a generative model, AlexNet was, at the time, a frontier model in terms of computational consumption,

hence why we include it as a comparison.
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Figure 6 Timeline of public disclosures of GPT-3 scale dense language models.

Safety

As described in Section 2, open-endedness combined with smooth, general capability scaling and the abrupt
scaling of specific capabilities, is likely to lead to safety issues [72, 9] that are found after a model has been
developed and deployed. Additionally, these models also possess known (pre-deployment) safety issues for
which we lack robust solutions [33] (e.g, How do you ensure the system does not generate inappropriate and
harmful outputs, such as making overtly sexist or racist comments [65]? How do you identify bias issues in
the system prior to deployment [8, 53]? How do you ensure that when the model outputs a claim, it isn’t
making up facts [10]?, etc.).

Lack of Standards and Norms

Because these large generative models have been developed very recently (within the last five years), and have
only recently become valuable to deploy from an economic perspective, no standards for the safe deployment
of these systems exist. This lack of standards compounds the problems caused by the four distinguishing
features of generative models we identify in Section 2, as well as the safety issues discussed above. At the
same time, there’s a growing field of research oriented around identifying the weaknesses of these models,
as well as potential problems with their associated development practices [7, 67, 9, 19, 72, 41, 50, 62, 66].
However, this research is not yet embodied in the form of repeatable standards that developers can adopt,
though there are some critical and important steps in this direction (e.g., through the use of model cards [48]
and data sheets [26] to document the capabilities, drawbacks, and other salient details of models). This lack of
standards makes it both more challenging to deploy systems, as developers may need to determine their own
policies for deployment, and it also makes deployments inherently risky, as there’s less shared knowledge
about what ’safe’ deployments look like. We are, in a sense, building the plane as it is taking off.

3.3 Empirical Observations

The above sections described some motivations and challenges that we expect AI developers to face with
respect to large models. In this section we assess how those issues may explain three inter-related empirical
observations: (1) large language models are rapidly proliferating (2) industry has become responsible for a
larger share of resource-intensive model development compared to academia, and (3) large model deployment
has already caused harm and controversy.

Large Language Models Are Rapidly Proliferating

Figure 6 shows a timeline of public disclosures of GPT-3 scale (100B - 530B) dense language models, since
GPT-3.18 About one year after GPT-3 was announced, a spike in similar model announcements followed.
These models were developed by both large and small private organizations from around the world: Jurassic-
1-Jumbo [46], AI21 Labs, Israel; Ernie 3.0 Titan [70], Baidu, China; Gopher [56], DeepMind, USA/UK;
FLAN [71] & LaMDA [68], Google, USA; Pan Gu [78] Huawei, China; Yuan 1.0 [76], Inspur, China;
Megatron Turing NLG [64], Microsoft & NVIDIA, USA; and HyperClova [43], Naver, Korea. This suggests
that the economic incentives to build such models, and the prestige incentives to announce them, are quite
strong.

18The timeline does not include sparse or mixture of experts models (e.g., GLaM [22]), which often achieve comparable
performance with similar or slightly lower compute, but are difficult to characterize in terms of a single model size. It
also does not include models trained on different modalities, such as code [4, 15], or multi-modal models such as [55].
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Figure 7 (Left) The amount of compute required by major AI projects over time is increasing exponentially for both
academic (blue) and industrial (orange) projects. (Right) The proportion of computationally-intensive AI results from
academia is steadily decreasing. (The blue curve represents a Lowess fit to the data.)

Rising Gap Between Industry and Academia

At the time of writing, the largest language models that are free and publicly available are BigScience T0
(11B) [61], and Eleuther AI’s GPT-J (6B) [69] and GPT-NeoX (20B) [45], which are one to two orders
of magnitude smaller than those developed by industry. Although academics can easily access (at least
some of) the larger models, it is typically only possible to do so through a (potentially expensive) company-
controlled API. This is part of a broader and longer-running trend towards high-compute research migrating
from academia to industry that can be quantified (See Appendix A.7 for details ). Figure 7 (Left) shows that
in recent years the compute required for large-scale AI experiments has increased by more than 300, 000X
relative to a decade ago.19 Along with this rise in resource intensity, we see a corresponding (and sharp) fall
in the proportion of these results that come from academia (Figure 7, Right). This suggests that, although
academics may be strongly motivated by scientific curiosity, and well-poised to research safety issues, they
may be significantly challenged by the high financial and engineering costs.

Harm and Controversy

There have been numerous examples of harm caused by the deployment of large generative models. For
example, the AI system Tay was deployed before it was properly scrutinized, and generated hateful language
[75]. It has also been shown that language models can memorize training data (which in turn can include
privately identifiable information) [14, 51] and aid in disinformation campaigns [13]. Furthermore, people
critical of organizations deploying such models have been directly harmed for voicing their concerns, some-
times to much controversy.20 Legislators are actively grappling with these issues. For example, the European
Commission’s proposed AI legislation seeks to create standards for how ‘high risk’AI systems are deployed
and monitored.21 This suggests that standards and norms for responsible model development and deployment
are both significantly needed and lacking.

4 Interventions to Encourage Beneficial Deployments

Based on the distinguishing features of large generative models that we outline in Section 2, and the vari-
ous motivations for model development and deployment that we discuss in Section 3, we believe that large
generative models will increasingly be developed and deployed despite their potential for harm. Here, we
outline possible technical and policy interventions (along with corresponding implementation paths) that can
increase the chance of these models being developed and deployed in positive ways.

Reduce compute asymmetries between the private sector and academia

As shown in section 3.3, private sector organizations are the primary developers and deployers of large
generative models. This means that other actors, such as academic and government ones, are less well-placed
to understand the distinguishing technical features of these models, and are therefore less equipped to research
the problems inherent to them. As outlined in Section 3.2, the main constraints here are the financial and

19Some people have noted that this trend may not be sustainable [47]
20https://www.wired.com/story/google-timnit-gebru-ai-what-really-happened/
21https://digital-strategy.ec.europa.eu/en/policies/european-approach-artificial-intelligence
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engineering resources for model training - therefore, we should create experimental infrastructure22 to make
it easier for a larger scientific community to analyze these models. To support and effectively utilize such
infrastructure, academic and government organizations will also need to find ways to make the necessary
financial and structural investments to be able to hire and retain technical talent that may otherwise go to
industry. This is important because academic and public sector motivations may stem more from the pursuit
of knowledge rather than profit, and can draw on more varied expertise than the private sector for analyzing
and exploring large generative models.23 Although large models are resource-intensive, they are actually
much less expensive than academic ‘Big Science’ projects in some other fields. For instance, the Large
Hadron Collider cost $5 billion to build24, the International Thermonuclear Experiment Reactor is projected
to cost between $10 and $15 billion25, the Square Kilometre Array is projected to cost around $1 billion26,
and the Long-Baseline Neutrino Facility and Deep Underground Neutrino Experiment are anticipated to cost
$2.4 billion27. By comparison, training frontier generative models like GPT-3 and others costs on the order
of a million to ten million dollars, so the infrastructure to develop models substantially larger than the current
frontier would have precedent in academia.

Implementation Path: Countries may wish to develop and deploy so-called ‘National Research Clouds’ that
facilitate access to a heavily subsidized and/or free compute resource for academic researchers. An existing
example here includes Compute Canada28. There are also future initiatives being considered, such as the
infrastructure being analyzed by the US government’s National AI Research Resource taskforce29, and the
‘Big Science’ project which is leveraging a supercomputer (partially subsidized by the French government)
to train large generative models. Recent work from Stanford also explores this implementation path in more
detail [38].

Improve knowledge about how to ‘red team’ models

As some of the challenges from these models stem from their open-ended nature, we should develop ways
to more effectively explore the input and output space of their models, so as to discover harms prior to
deployment. We can model this on the ‘red team’ approach which is popular in the computer security industry
and can be applied in an AI context [5, 12]. This should take the form of both static benchmarks (for
example, adversarial datasets to probe for weaknesses in computer vision systems [34]), as well as continuous
evaluation by humans carrying out multi-step interactions (e.g, conversations [3, 77]) with these models, as
well as plans for how to update the models in response to what these evaluations find.

Implementation Path: Model developers should invest in internal red teaming approaches for their models
and seek to publish on the techniques, datasets, and policy choices they make when red teaming. This will
facilitate more shared awareness about how to red team models. There may also be a commercial market
that can be developed for ‘red teaming as a service’, though more community research into the area may be
a prerequisite for this. AI developers may also wish to create ‘bug bounty’initiatives, where they give out
prizes to people who can demonstrate repeatable ways of breaking a given AI system [42]. Finally, we should
consider how to augment (or complement) manual red-teaming with automated methods [51].

22We do not distinguish between public or private (cloud) infrastructure. Some have raised concerns regarding how
specific choices here may centralize power in different ways [39]. Governments will need to examine how usable these
different infrastructures are, and the long-term ramifications of empowering particular infrastructure providers.

23It is worth noting that by increasing the amount of actors with access to non-trivial compute, it’s possible to increase
some risks with regard to safe development and deployment of models, especially those that stem from a need to co-
ordinate among different developers. However, this risk likely does not add significantly to the existing risk landscape,
given that economic incentives for model development are leading to a proliferation of model developers in industry —
academics have much less of an incentive to commercially deploy their models. On balance, therefore, it seems helpful
to give academia more resources to help it serve as a counter-weight to industry.

24https://www.forbes.com/sites/alexknapp/2012/07/05/how-much-does-it-cost-to-find-a-higgs-
boson/?sh=cf2196e39480

25https://www.iter.org/FAQ
26https://physicsworld.com/a/square-kilometre-array-hit-with-further-cost-hike-and-delay/
27https://www.aip.org/fyi/2020/flagship-neutrino-project-working-keep-costs-within-cap
28https://www.computecanada.ca/home/
29https://www.whitehouse.gov/ostp/news-updates/2021/06/10/the-biden-administration-launches-the-national-

artificial-intelligence-research-resource-task-force/
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Explore and prototype novel governance structures and government interventions

If the capabilities and resource-intensiveness of models scale further, then it may be prudent to explore gover-
nance structures that alter the incentives of private sector actors with regard to development and deployment.
To do this, there will be a combination of soft regulation (e.g, the creation of voluntary best practices by
industry, academia, civil society, and government), and hard regulation (e.g, transferring these best practices
into standards and legislation.). Governments should also explore regulatory approaches that can increase the
chance of actors developing and deploying beneficial systems.

Implementation Path: AI development organizations should experiment with novel governance and over-
sight structures that let a broader set of stakeholders factor into model deployment decisions. This could
take the form of oversight functions which can critique and publicly censure organizations should the orga-
nization diverge from the recommendations of the oversight body, to novel forms of governance that give
diverse stakeholders power over an organization (for example, a private company could elect board members
who represent the interests of civil society and/or academia rather than a pure profit-driven motive). AI de-
velopment organizations should also work among themselves to develop best practices for the development
and deployment of AI systems, then seek to get feedback on these from a broader range of stakeholders,
potentially via the creation of third-party organizations for the purposes of standard formation. Along with
innovations in governance of AI organizations, and work on best practices, we also believe governments
should invest in better methods to assure the benefits of systems being deployed - specifically, governments
should support efforts to measure and monitor the capabilities (both harmful and beneficial) of deployed AI
systems [74], and should support the creation of an ecosystem oriented around auditing AI models and AI
development processes [49, 57, 58].

Improve the tools available for model evaluation

Given the open-ended nature of these models, researchers would benefit from having more tools available to
help them evaluate these models. If we can find ways to create more open source tools and frameworks in this
area, then we can benefit the broader model development ecosystem. Particularly valuable would be tools for
doing a very broad set of evaluations, or evaluations that search (e.g. across prompts) for new capabilities,
rather than just fixed evaluation datasets that measure known capabilities.

Implementation Path: Research funding organizations should allocate funds to researchers that are building
the evaluation systems (e.g, tests, test datasets, and benchmarks) that model developers can then use to better
understand the capabilities of their systems. Private sector and independent research organizations should
invest further into developing tools to help researchers understand and evaluate large generative models - ex-
isting examples include Eleuther’s ‘Language Model Evaluation Harness’ [25], the BIG-bench benchmark30,
HuggingFace’s ‘BERTology’ tooling31, and more.

Improve our understanding of abrupt jumps in capabilities

In Section 2.2 we gave a few examples of abrupt jumps in capabilities (abrupt capability scaling). Anecdo-
tally, our experience has been that abrupt jumps occur in only a minority of tasks, but at the same time are not
especially rare. How often do they occur, is there a pattern to the kind of tasks on which they occur, why do
they occur, and are there any leading indicators that predict when they are about to occur? Answering these
questions could help to address some of the most surprising behavior in large models, and might be especially
important for future AI safety issues.

Implementation Path: A systematic empirical study of abrupt jumps, across research and possibly com-
mercial tasks for large models, could help to shed light on how common they are and when they occur. One
route to studying this could be through interpretability research (e.g., [16]), and specifically a new approach
known as mechanistic interpretability [23] - attempting to reverse engineer the computations performed by
transformers (which underpin many of the generative models discussed in this paper) gives researchers a way
to better understand how models behave.

30https://github.com/google/BIG-bench
31https://huggingface.co/docs/transformers/bertology
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5 Conclusion

In this paper, we have articulated (and provided evidence for) our basic thesis that large generative models
have an unusual combination of high predictability - model capabilities scale in relation to resources expended
on training - and high unpredictability - before training a model, it’s difficult to anticipate all the inputs it will
be subjected to, and what capabilities and outputs it will have. The former drives rapid development of such
models while the latter makes it difficult to anticipate the consequences of their development and deployment.
We’ve also described how these traits combine to alter the landscape of AI development, making it more
likely a greater number of actors will build these models. Put bluntly: the status quo outlined here suggests
that the next few years will see a proliferation of actors building ever-larger models, and these actors will
have strong motivations to deploy these models, despite their potential for (possibly unpredictable) harmful
societal impact. Various interventions (including the ones we outline in our paper) can change this dynamic,
but it is nevertheless the current situation we must start from and continue to improve.
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Contributors include Nicholas Joseph, Tom Henighan, and Andy Jones. Nelson Elhage, Kamal Ndousse, Zac
Hatfield-Dodds. Ben Mann also contributed to this infrastructure and built the human feedback interface.
Jackson Kernion managed the crowd workers and maintained the infrastructure.

Sam McCandlish led model pretraining efforts, often in collaboration with Jared Kaplan.

Tom Henighan managed our research cluster, helped build our distributed training system. He also
helped with ML research on large language models. Nova DasSarma has also helped manage the cluster.

Andy Jones was central in building our sampling infrastructure. He also provided engineering sup-
port to Deep Ganguli for all experiments.

A.2 How Developers Use Scaling Laws

Developers may use scaling laws in a variety of ways, some of which we outline here.

1. To empirically estimate the compute-efficient frontier — the lowest possible test loss one can achieve
within a fixed compute budget. This can help developers forecast the theoretical costs of training
large models and allocate resources accordingly.

2. To infer whether simple increases in scale may have the potential to unlock capabilities that don’t
work at smaller scale. This helps developers forecast progress in AI and to tackle more ambitious
problems.

3. To quantitatively test whether enhancements other than scaling (e.g. hyper-parameter tuning, novel
architecture design, etc.) actually matter as models increase in scale. If these non-scale based
changes do not give improvements at scale, then developers can allocate developer time to pursuing
scale relative to other alternatives.

4. To debug model training. If a bigger model is not doing better than a smaller model, then developers
know to prioritize looking for possible bugs inherent only to models of sufficient scale. Some com-
monly encountered bugs that become increasingly pernicious with scale involve numerical precision
issues, data quality issues, over-fitting issues, and hardware related issues.

5. To evaluate the performance of models on a common scale. Often, different researchers publish
results for models of different sizes. A researcher can use scaling laws to infer how much of the
differences in model accuracy are merely due to scale, and also how differently sized models com-
pare to one’s own models after accounting for scale. For instance, an improved approach might be
comparable to a 10% model size increase. Knowing this information gives two separate options for
pursuing such a model improvement.

A.3 Recommendation System Experiment

To illustrate how smooth general capability scaling (discussed in Section 2.1) may correlate with task per-
formance and forecast economic value, we perform a small original experiment where we analyze the rela-
tionship between scale and capabilities for GPT-3-like language models [3] to be used as recommendation
systems with zero-shot learning. We choose a recommendation system example because these systems have
tangible economic relevance and societal impact.

Figure 8 shows that language models smoothly decrease in the standard Root Mean Square Error (RMSE,
lower is better) metric on the widely used Movielens 1M movie recommendation system task [31] as they
increase in size. The smallest model achieves a significantly better RMSE (1.06) than chance (RMSE 1.91),
and the largest model achieves a significantly lower RMSE (0.94) than a strong baseline model (RMSE 0.98,
see below for further details). Although no models achieve state of the art (SOTA) performance (RMSE
0.82), these results are still surprising because the language models (in our zero-shot setting) see two orders
of magnitude less training data than the SOTA model.

Trends like those in Figure 8 forecast how much it would likely cost to develop a state-of-the-art capability
on an economically valuable task. In this particular case, we get an incredulous result - at 800T parameters, a
language model will achieve state of the art performance with zero-shot learning. This number indicates that
it’s unlikely language models will be used as commercially deployed recommendation systems in this manner
for several years (and that even then it might not be worth its costs).32 But the results of a different experiment

32Of course, algorithmic improvement that shifts the scaling laws is still possible.
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Figure 8 Language models can perform as zero-shot recommendation systems with increasing scale. This demonstrates
how general capability scaling can correlate with an economically valuable task as described in Section 2.1.

(e.g. a fine-tuned language model trained explicitly to solve this task), could have justified expenditure rather
than advising against it. As such, scaling laws can de-risk investment without saying anything about the
detailed behavior of the model in specific cases.

More specific technical details are as follows. To perform this experiment, we chose the Movielens 1M
(1 million ratings) dataset [31] both because of its widespread use, the fact that it contains demographic
information about users (age, occupation, gender, zip code), and because we have observed language models
to have considerable knowledge about movies (presumably due to a preponderance of text on the internet
about movies).

The dataset consists of ∼ 4K movies rated by ∼ 6K users on a scale of 1-5. On average, each user has rated
∼ 160 movies, which means 96% of the data are missing. The goal of a recommendation system is to predict
these missing values, which anticipate how a user will rate a movie they have not previously rated before.

To evaluate performance on this task, we take the standard approach of partitioning the data into a train and
test set, using 1% of the total dataset (10K ratings) as our test set. Performance on this task is typically
reported as the root mean squared error (RMSE) between the predicted and actual ratings on the test set. Per-
fect predictions would yield an RMSE of 0 and random guessing corresponds to an RMSE of 1.91. A strong
baseline model simply assigns the average rating (averaged across all users) in the train set as the predicted
ratings for all movies in the test set. This essentially ranks movies by their overall popularity, independent
of any personalization. The strong baseline achieves an RMSE of 0.98. State of the art performance on this
dataset, is currently an RMSE of 0.822 according to [29].33

In general, state of the art algorithms rely on matrix completion (also known as matrix factorization) algo-
rithms, which simply try to impute the missing values in the user-by-movie matrix by expressing this matrix
as the outer product of a small number of low dimensional latent vectors, which are learned from the training
data, in order to explicitly minimize the RMSE between predicted and actual ratings. Algorithms with lower
RMSEs are typically parameterized by neural network models.

It’s unclear how to use language models as matrix factorizers. Instead, we employ similar zero-shot learning
approach with the following prompt:

A {age} {gender} who is employed as an {occupation} previously rated
{list_of_movies_and_ratings_from_training_set} will rate
{movie_from_test_set} a

We replace the variables in curly braces with their corresponding values from the training set (for the first 4
variables) and test set (for the last variable). We then compute the probability that the language model will
predict the next token in the sequence as a 1, 2, 3, 4, or a 5. Finally, we compute the weighted mean of
the ratings, where the weights are equal to the probabilities (which are normalized to sum to 1) the language
model assigns to those ratings as the final rating prediction.

We use zero-shot learning because the variable, list_of_movies_and_ratings_from_training_set,
can often correspond to a very long sequence of text, since on average users have rated ∼ 200 movies.
Because our models have a fundamental limit on how large input text sequences can be, as determined by
the context window length, we randomly sample up to 500 previously rated movies per user, in order to
stay within the limits. An alternative strategy is to use few-shot learning, where multiple users are provided
as examples in the prompt, but only show a small number, e.g., 5, of previously rated movies per user.

33https://paperswithcode.com/sota/collaborative-filtering-on-movielens-1m
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Figure 9 Predictive accuracy ratio for Black versus white defendants. A value of 1 is fair. COMPAS achieves a value
of 0.97. The language models show no clear trend in this ratio, regardless of when race is excluded in the prompt (blue)
or included (orange). However, the largest language models are slightly less equitable than COMPAS according to this
metric.

Empirically, we found that our zero-shot approach (one user, but a lot of previously rated movies by that
user) led to far lower RMSE than all of our few-shot learning experiments.

There is a movie recommendation task for language models in the BigBench framework based on a Movielens
benchmark.34 However, this task is formulated specifically for a language model, in the form of a multiple
choice task as opposed to a regression or matrix completion task. Our formulation of this task allows us
to directly compare general purpose language models to special purpose systems on the same axis in order
to assess a more realistic capability. Finally, we note that we can extend the analysis we do here to other
economically valuable real-world tasks such as those in the recent Real-World Few-Shot Text-Classification
(RAFT) benchmark [1].

A.4 COMPAS Experiment

We use the same dataset, filtering operations, and metrics used for the ProPublica analysis of COMPAS
[2] (taken directly from the Ipython Notebook on GitHub).35 We use the same prompt as [20] (which was
designed for a human recidivism prediction experiment) for the language model:

The defendant is a {sex} aged {age}. They have been charged with:
{c_charge_desc}. This crime is classified as a {c_charge_degree}.
They have been convicted of {priors_count} prior crimes. They
have {juv_fel_count} juvenile felony charges and {juv_misd_count}
juvenile misdemeanor charges on their record.
Do you think this person will commit another crime within 2 years?

We replace the variables in curly braces with values for each defendant in the dataset. Following [20] we
also consider a prompt in which race is included, by changing the first sentence in the above prompt to
be: The defendant is a {race} {sex} aged {age}. We rely on few-shot learning [11], in which we
provide the language model with 50 labeled examples taken at random from the training dataset (less than
1% of the data) before querying the models on each independent test prompt.

Next, given the prompt above, we compute the probability that the next token in the prompt is a Yes and
a No. We normalize these two probabilities to sum to 1. We then directly compare the probability of a
Yes response to the ground-truth label as to whether or not the defendant in question actually re-offended,

in addition to the analogous prediction provided by COMPAS. We use the Fairlearn Python package36 to
compute all metrics reported in the main text.

In addition to the metrics reported in the main text, we also examined the predictive accuracy ratio for Black
versus white defendants as in [2, 20]. We saw no clear trends with model size (Figure 9) regardless of
whether race was excluded from the prompt (blue) or included (orange). Though the largest language models
are slightly less fair than COMPAS according to this metric.

Our analysis suffers from several important caveats. First, it is well known that there are many more fairness
metrics than the two we consider here, and that it’s statistically impossible for a single algorithm to achieve

34https://github.com/google/BIG-bench/blob/main/bigbench/benchmark_tasks/movie_recommendation/README.md
35https://github.com/propublica/compas-analysis
36https://github.com/fairlearn/fairlearn
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parity on all these metrics e.g., [24]. Second, benchmark risk assessment instrument datasets often contain
numerous measurement biases and errors which can make them ill-suited for making claims about real-
world impact without carefully considering the the complicated socio-technical systems (in this case, the
US criminal justice system) in which they are used [6]. Finally, comparisons to proprietary algorithms will
always be difficult to make precise without either significant reverse engineering or pressure from companies
to lead to more transparent algorithms [60].

A.5 Open Ended Outputs and Creative Expression

Capabilities may emerge in areas that are challenging to evaluate quantitatively, and therefore likely to resist
systematic analysis. A key example is the case of AI models mimicking human creative expression. As a
concrete example, we provide37 a sample of over three thousand imitation poems generated randomly from a
large language model (more accurately, these are samples generated from a prompt including several modern
and contemporary poems, so a small fraction of the samples are not actually poems). We cannot provide any
official evaluation, but informally we find both the quality of some of the texts, and the imitation of specific
authorial styles quite impressive. Some professional writers who are aware of the growing capabilities of
large language models are very impressed38, but also alarmed by their far-reaching implications. Academics
outside of engineering departments are also starting to consider the pros and cons of machine creativity.39

A.6 Toxicity Experiment Details

We follow a similar analysis outlined in [3] where we leverage the RealToxicityPrompts [27] dataset to elicit
short comments in response to real world samples of text (prompts) obtained from the internet. Following
[27], we label the prompts as ‘toxic’if they have a toxicity score > 0.5, otherwise we label them ‘non-
toxic’. We then obtain a random sample of 1K of these prompts, with an equal proportion of ‘toxic” and
‘non-toxic’prompts. Next, we we sample 25 model responses from language models of various sizes [3] per
prompt. We use the same prompts per language model.

We then measure the toxicity of the model responses with an open-source toxicity detector [30] that outputs
a score, between 0 and 1, with a higher score corresponding to more toxic content. Next, we fit a linear
regression model, where we predict the toxicity score based on a categorical coding of model size, and a
binary indicator as to whether the prompt was labeled as toxic or non-toxic. We plot the estimated coefficients
on model size (thus controlling for the toxicity of the prompt) and the 95% confidence intervals around them
in the main text.

Our analysis is subject to several caveats. First, it’s unclear how the magnitude of the effect size in Figure
5 influences human perception of the toxicity of the generated text. Different people often have different
perceptions about text with the same toxicity score [73]. Second, automated toxicity detection algorithms
are known to suffer from several limitations, for example, they can be biased for certain minority groups
[27, 73]. Finally, our reliance on an open-source toxicity detector [30] is counter to the more common use of
the Perspective API for toxicity detection (though we believe these toxicity detectors to be similar[3]).

A.7 AI and Compute Analysis Details

We leverage data from existing work on estimating compute usage for training large-scale AI models40 which
was recently complemented with additional data from more recent experiments [63]. In this augmented
dataset, we label training runs as Industry or Academic based primarily on affiliations of first authors. If a
first author had a dual affiliation, we labeled the run as industry, because in practice we’ve found that with
access to both, industry-controlled compute is the preferred path. The fit it in Figure 7 (Right) is based on a
LOWESS regression with default parameters from the Seaborn Python package. These data are incomplete
and should be interpreted carefully due to sampling bias. For example, we do not have access to compute
estimates for industrial models used in production for search, recommendation engines, or self driving cars.

37https://gist.github.com/jareddk/6512393d4a996fbf3a72be265a5285aa
38https://erikhoel.substack.com/p/big-tech-is-replacing-human-artists
39For example, see: https://tedunderwood.com/2021/02/02/why-sf-hasnt-prepared-us-to-imagine-machine-learning/
40https://openai.com/blog/ai-and-compute/
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